DMRB: Assessment of Local Air Quality

OUTPUT SHEET

Current receptor				
Receptor Name	Ash to Brookw	ood A322 with 100m	Receptor number	8
Assessment year	2025			

Results							
	Annual mean				For comparison with Air Quality Standa		
Pollutant	Background concentration	Road traffic component	Total	Units	Metric	Value	Units
СО	0.00	0.00	0.00	mg/m ³	Annual mean*	0.00	mg/m³
Benzene	0.00	0.00	0.00	μg/m ³	Annual mean	0.00	μg/m³
1,3-butadiene	0.00	0.00	0.00	μg/m³	Annual mean	0.00	μg/m³
NO _x	10.7	0.7	11.4	μg/m³	Not applicable		
NO ₂	8.2	0.2	8.4	μg/m³	Annual mean*	8.4	μg/m³
PM ₁₀	0.0	0.06	0.06	ug/m³	Annual mean Days >50μg/m³	0.1	μg/m³ Days

^{*} See Footnote 32 in DMRB Volume 11 Chapter 3

Contrib	Contribution of each link to annual mean					
Link number	CO (mg/m³)	Benzene (μg/m³)	1,3-butadiene (μg/m³)	NOx (μg/m³)	PM ₁₀ (μg/m³)	
1	0.00	0.00	0.00	0.67	0.06	
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

All rece	eptors		Pollutant concentrations at receptor						
			co*	Benzene	1,3-butadiene	NO _x	NO ₂ *	PM	10
Receptor number	Name	Year	Annual mean mg/m ³	Annual mean μg/m³	Annual mean μg/m³	Annual mean μg/m³	Annual mean μg/m ³	Annual mean μg/m ³	Days >50μg/m³
1	Ash to Brookwood A322 without 5m	2025	0.03	0.03	0.03	16.79	10.25	0.57	0.00
2	Ash to Brookwood A322 with 5m	2025	0.03	0.03	0.03	17.65	10.52	0.65	0.00
3	Ash to Brookwood A322 without 10m	2025	0.03	0.03	0.03	16.20	10.06	0.51	0.00
4	Ash to Brookwood A322 with 10m	2025	0.03	0.03	0.03	16.97	10.31	0.59	0.00
5	Ash to Brookwood A322 without 50m	2025	0.01	0.01	0.01	12.65	8.90	0.18	0.00
6	Ash to Brookwood A322 with 50m	2025	0.01	0.01	0.01	12.93	8.99	0.21	0.00
7	Ash to Brookwood A322 without 100m	2025	0.00	0.00	0.00	11.28	8.41	0.05	0.00
8	Ash to Brookwood A322 with 100m	2025	0.00	0.00	0.00	11.37	8.44	0.06	0.00

^{*} See Footnote 32 in DMRR Volume 11 Chanter 3

Assesment of Impact as a % of Critical Load Ash to Brookwood

Estimated Worst Case Background 2020 Critical Load*	Worst case process contributi	on PEC	PEC as % o	f Critical load
10.78	10	0.03	10.81	108
10.78	20	0.03	10.81	54

IS PEC LESS THAN 70% OF CRITICAL LOAD?

10 108 NO 20 54 YES

*CRITICAL LOADS

with Erica tetralix

APIS 2011 kg N ha-1 y-1
Northern Atlantic wet Heaths 10 - 20

APIS 2011

kg N ha-1 y-1

10 - 20

WOODLARK NIGHTJAR AND DARTFORD WARBLER

Assesment of Impact as a % of Critical Load ASH TO BROOKWOOD HEATH

Distance (m)	Estimated Worst Case Background 2020	Critical Load*	Worst	case process PEC	PEC	as % of Critical load
5		10.78	10	0.027	10.81	108
10		10.78	10	0.024	10.80	108
50		10.78	10	0.009	10.79	108
100		10.78	10	0.003	10.78	108

	IS IMPACT LESS THAN 1% OF CRITICAL LOAD)?	
	Where critical load is taken as		
5		10	0.265 <mark>NO</mark>
10		10	0.243 <mark>NO</mark>
50		10	0.095 YES
100		10	0.030 YES

Distance Regression (Exponential)

	U	` '	•
DISTANCE	EX	KPONENT	IAL
	10		0.2399
	50		0.0956
_	100		0.0303

NB SPA SAC STARTS AT APPROX 70M FROM CENTRELINE

*CRITICAL LOADS

with Erica tetralix

APIS 2011 kg N ha-1 y-1
Northern Atlantic wet Heaths 10 - 20

APIS 2011

kg N ha-1 y-1
WOODLARK NIGHTJAR AND 10 - 20
DARTFORD WARBLER

Dec 2011 ASH TO BROOKWOOD SPA - Assessment of Designated Sites DMRB HA 207 07 Annex F.xlsIdentify Site

DMRB Volume 11 Section 3 Part 1 HA 207/07 Assessment of Designated Sites Annex F

1. Identify Sensitive Site

Is the site sensitive to N deposition?

ASH TO BROOKWOODS HEATH SPA (within 200m of A322)

Part of Thames Basin Heaths

SPA due to three bird species - See APIS

All sensitive to Nitrogen - See APIS

THURSLEY ASH PIRBRIGHT AND CHOBHAM SAC

Dec 2011 ASH TO BROOKWOOD SPA - Assessment of Designated Sites DMRB HA 207 07 Annex F.xlsAve N depostion

2. Obtain total average N deposition for 5km grid square

See APIS

Ash to Brookwoods Heath SPA - Location for SSSI unit 2 SU957556*

www.gridreferencefinder.com - 495700, 155600 NB - Location ~630m from A322 Bagshot Road

www.apis.ac.uk - search database by habitat or species - Site Relevant Critical Loads

Therefore:

Species	2005 N deposition (kg/ha/yr)	2020 N deposition (kg/ha/yr)
Woodlark	16.24	10.78
Nightjar	16.24	10.78
Dartford Warbler	16.24	10.78
TYPICAL N DEPOSTION FOR CALC	CULATION	10.78

^{*}www.english-nature.org.uk

SSSI Ash to Brookwood Heaths 2005 N deposition (kg/ha/yr) 2020 N deposition (kg/ha/yr)
Northern Atlantic wet Heaths 15.97 10.36

with Erica tetralix

3. Obtain NO2 and NOX background

Air Quality Archive - http://uk-air.defra.gov.uk/

Local Air quality Managment (LAQM) - Tools for LAQM - Background Maps - Nox NO2 etc 2008 background maps - download CSV 2008 2020 background maps

Select Authority - Select Pollutants (NO2 -Nox) - Select year (2010) - Get data - save Locate grid ref (see previous sheet)

Therefore:

Best Grid ref see below

Grid Ref chosen	NO2 2020 NOX	2020	
496500, 156500	8.39	10.97	WB
495500, 156500	7.96	10.36	WB
495500, 155500	8.42	11	GBC
496500, 155500	8.07	10.51	WB
AVE	8.21	10.71	

^{*}NB these values provide an average for the area. Guidance recommends background is taken from up to 4km away so that road contrib is not double Counted. Road contribution to Nox is calculated here as at ~1.53ug/m3

4. Calculate the NO2 Concentration in transect near the road

See typical DMRB screening

Most App Background for Ash to Brookwood SPA/SAC 2020 (Only Available to 2020 - can use as worst case)

Nox NO2

Average Values 10.71 8.21

With out dev flows A With Dev (scenario D) flows A322 WITH MINUS WITHOUT without with 7170 8180 1010 6 6 6 60.2 60.3

			NO _x	NO ₂ *	WORST	
Receptor number	Name	Year	Appual maan ug/m ³	Annual	CASE PC	
			Annual mean μg/m ³	mean		
1	Ash to Brookwood A322 without 5m	2025	16.79	10.25	<u>.</u> _	
2	Ash to Brookwood A322 with 5m	2025	17.65	10.52	0.27	
3	Ash to Brookwood A322 without 10m	2025	16.20	10.06	_	
4	Ash to Brookwood A322 with 10m	2025	16.97	10.31	0.24	
5	Ash to Brookwood A322 without 50m	2025	12.65	8.90	•	
6	Ash to Brookwood A322 with 50m	2025	12.93	8.99	0.09	
7	Ash to Brookwood A322 without 100m	2025	11.28	8.41	_	
8	Ash to Brookwood A322 with 100m	2025	11.37	8.44	0.03	

NB IS WITH MINUS WITHOUT GREATER THAN 1000? FURTHER ANALYSIS REQUIRED

^{*} See traffic analysis for derivation of AADF

5. Estimate the dry deposition of NO2 in a transect near the road

Distance from Road	NO2 2020	N deposition 2020*
5m	0.27	0.027
10m	0.24	0.024
50m	0.09	0.009
100m	0.03	0.003

NB calulation taken at 5m from centreline

^{*} As per EMEP Eulerian photochemistry model see Annex F

Dec 2011 ASH TO BROOKWOOD SPA - Assessment of Designated Sites DMRB HA 207 07 Annex F.xlsRoad increment to NO2 dry dep

6. Determine the road increment to NO2 dry deposition

Step 6 not clear. Therefore :

APIS Background N for this location in 2020	10.78
Calculated 'process contribtion' N deposition for this location*	0.027
Calculated 'process contribtion' N deposition for this location*	0.024
Calculated 'process contribtion' N deposition for this location*	0.009
Calculated 'process contribtion' N deposition for this location*	0.003

^{*} Based upon Annex F instructions